Discovered in the early 1970s, gamma-ray bursts (GRBs) are amazing cosmic phenomena appearing randomly on the sky and releasing large amounts of energy mainly through gamma-ray emission. Although their origin is still under debate, they are believed to be produced by some of the most violent explosions in the Universe leading to the formation of stellar black-holes. GRBs are detected by their prompt emission, an intense short burst of gamma-rays (from a few millisecondes to few minutes), and are followed by a lived-afterglow emission observed on longer timescales from the X-ray to the radio domain. My thesis participates to the developement of the SVOM mission, which a Chinese-French mission to be launched in 2021, devoted to the study of GRBs and involving space and ground instruments. My work is focussed on the main instrument ECLAIRs, a hard X-ray coded mask imaging camera, in charge of the near real-time detection and localization of the prompt emission of GRBs. During my thesis, I studied the scientific performances of ECLAIRs and in particular the number of GRBs expected to be detected by ECLAIRs and their characteristics. For this purpose, I performed simulations using the prototypes of the embedded trigger algorithms combined with the model of the ECLAIRs instrument. The input data of the simulations include a background model and a synthetic population of gamma-ray bursts generated from existing catalogs (CGRO, HETE-2, Fermi and Swift). As a result, I estimated precisely the ECLAIRs detection efficiency of the algorithms and I predicted the number of GRBs to be detected by ECLAIRs : 40 to 70 GRBs per year. Moreover, the study highlighted that ECLAIRs will be particularly sensitive to the X-ray rich GRB population. My thesis provided additional studies about the localization performance, the rate of false alarm and the characteristics of the triggers of the algorithms. Finally, I also proposed two new methods for the detection of GRBs.The preliminary results were very promising and demonstrate that the sensitivity of ECLAIRs to the short GRBs (an interesting population due to the predicted association with gravitational waves) could be improved further.
Link to my PhD manuscript